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Abstract. An investigation to deepen the connection between the family of nonlinear Schrödinger equations
and the one of Korteweg-de Vries equations is carried out within the context of the Madelung’s fluid picture.
In particular, under suitable hypothesis for the current velocity, it is proven that the cubic nonlinear
Schrödinger equation, whose solution is a complex wave function, can be put in correspondence with the
standard Korteweg-de Vries equation, is such a way that the soliton solutions of the latter are the squared
modulus of the envelope soliton solution of the former. Under suitable physical hypothesis for the current
velocity, this correspondence allows us to find envelope soliton solutions of the cubic nonlinear Schrödinger
equation, starting from the soliton solutions of the associated Korteweg-de Vries equation. In particular, in
the case of constant current velocities, the solitary waves have the amplitude independent of the envelope
velocity (which coincides with the constant current velocity). They are bright or dark envelope solitons
and have a phase linearly depending both on space and on time coordinates. In the case of an arbitrarily
large stationary-profile perturbation of the current velocity, envelope solitons are grey or dark and they
relate the velocity u0 with the amplitude; in fact, they exist for a limited range of velocities and have a
phase nonlinearly depending on the combined variable x − u0s (s being a time-like variable). This novel
method in solving the nonlinear Schrödinger equation starting from the Korteweg-de Vries equation give
new insights and represents an alternative key of reading of the dark/grey envelope solitons based on the
fluid language. Moreover, a comparison between the solutions found in the present paper and the ones
already known in literature is also presented.

PACS. 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including
parametric effects, mode coupling, ponderomotive effects, etc.) – 05.45.Yv Solitons – 42.65.-k Nonlinear
optics – 67.57.Jj Collective modes

1 Introduction

A number of problems in plasma physics are described
in terms of suitable nonlinear Schrödinger equations
(NLSE) [1–4]. Under suitable hypothesis, the well known
Zakharov system of equations [5,6] gives a large variety of
NLSEs describing the nonlinear wave propagation of e.m.
structures [1], such as e.m. wavepackets and e.m. beams,
as well as electrostatic structures, such as plasma wave en-
velopes. The large amplitude electromagnetic (e.m.) wave
propagation in optical fibers and in transmission lines is
governed by several type of NLSEs [7], as well.

a e-mail: renato.fedele@na.infn.it

A very important role is played by the NLSE also in
mesoscopic physics, where it takes the names of Ginzburg–
Landau [8,9] and Gross–Pitaevskij equations [10] which
recently have been recognized to be very important in de-
scribing the Bose-Einstein condensation [10].

Additionally, within the framework of the quantum-
like description provided by the Thermal Wave Model
(TWM) [11] some kind of NLSE seem to be suitable for
describing a number of problems in optics and in dynamics
of charged-particle beams [12–14].

In all the above branches of researches, special atten-
tion has been devoted in literature for the envelope soli-
tons of the several NLSEs, due to their peculiar charac-
teristic of stability.
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On the other hand, a wide family of Kortweg-de Vries
equations (KdVE) provides for the description of the
nonlinear wave propagation in hydrodynamics (f.i., the
shallow water waves) [15,6], gas-dynamics [15], plasma
(f.i., the ion-acoustic wave propagation) [15], transmission
line theory (f.i., lines with effect of the thermal noise) [16],
and in charged-particle beam dynamics as well [17].

In particular, the investigations on the existence of soli-
tons started more than one century ago just with the study
of nonlinear wave propagation modelled with the classical
KdVE [18]. Later on, it has been rapidly extended to the
most of the above subjects, and at the present time the
corresponding theories are supported by a large body of
experimental evidences.

It is well known that the soliton satisfying the clas-
sical KdVE can be found with a very powerful method
called inverse scattering method [19]. This method puts
the KdVE in correspondence with a (linear) Schrödinger
equation (LSE) in such a way that the soliton of the for-
mer plays the role of the (linear) potential of the latter. In
this connection between KdVE and LSE, very important
theorems have been found [20] and the inverse scattering
has been soon applied to NLSE, as well [21]. Remarkably,
the capability and the richness of similar methods cur-
rently applied to nonlinear partial differential equations
for solving a number of physical problems have produced
an autonomous research activity in mathematical physics
usually called inverse problems.

In this paper, we want to extend the above connec-
tion between KdVE and LSE to the family of NLSE.
Starting from the NLSEs, our analysis is carried out in
the Madelug’s fluid representation of an arbitrary NLSE.
Consequently, in this framework, we will not solve an in-
verse problem. Under the hypothesis of stationary fluid,
the main goals of our analysis are to show: (i) that we
can transform one equation for the complex wave func-
tion into the other for the squared modulus of this wave
function; (ii) the existence of envelope solitons of the cubic
NLSE whose feature are the same of the classical KdVE
solitons, which, in particular, relates the soliton velocity
with its amplitude. This last property is not exhibited
by the standard envelope solitons of the cubic NLSE for
which the soliton amplitude is independent of the soliton
velocity.

In the next section we formulate our problem and in-
troduce the basic equation of the Madelung’s fluid pic-
ture [22]. In Section 3, under the hypothesis that the cur-
rent velocity is a given function, we find an equation for
the density of the Madelung’s fluid (i.e., the squared mod-
ulus of the wave function associated with the NLSE) in
the case of an arbitrary nonlinear potential. In Section 4,
the current velocity is assumed constant; consequently, the
above equation for the density describes nonlinear sta-
tionary states. Once the cubic nonlinearity for NLSE is
assumed, it reduces to the classical KdV-type equation
written for stationary-profile waves in terms of the com-
bined independent variable (self-similar variable). Under
this hypothesis, we find solitary solutions which exhibit
the property, typical of solitary waves of NLSE, for which

their velocity is independent of their amplitude. In Sec-
tion 5, an analysis is carried out for the case in which all
the variables of the Madelung’s fluid, including the cur-
rent velocity, are functions of the combined variable. In
correspondence of a cubic nonlinearity of NLSE, the den-
sity equation reduces again to the classical form of KdVE
and the system admits solitary waves fully similar to the
standard Scott-Russel soliton of the shallow water. In par-
ticular, these solitons have the usual property of relating
the velocity with the amplitude. Finally, conclusions and
remarks are given in Section 6.

2 Formulation of the problem

Let us consider the following nonlinear Schrödinger-like
equation (NLSE):

iα
∂Ψ

∂s
= −α

2

2
∂2Ψ

∂x2
+ UΨ, (1)

where U is, in general, a functional of |Ψ |2, i.e. U =
U
[
|Ψ |2

]
, the constant α accounts for the dispersive ef-

fects, and s and x are the time-like and the configurational
coordinates, respectively. By representing Ψ as:

Ψ =
√
ρ(x, s) exp

[
i
α
Θ(x, s)

]
, (2)

(note that |Ψ |2 = ρ) it is well known that (1) is equiv-
alent to the following pair of coupled fluid equations
(Madelung’s fluid [22]):

∂ρ

∂s
+

∂

∂x
(ρV ) = 0 , (3)

(
∂

∂s
+ V

∂

∂x

)
V = −∂U

∂x
+
α2

2
∂

∂x

[
1
ρ1/2

∂2ρ1/2

∂x2

]
, (4)

where the current velocity V is given by

V (x, s) =
∂Θ(x, s)
∂x

· (5)

Note that, according to the above assumptions, U = U [ρ].
Under suitable assumptions for the current velocity,

we want to show that the set of equations (3, 4) (which
is fully equivalent to Eq. (1)) can be cast in a nonlinear
evolution equation for the density which has the form of a
sort of generalized KdVE. The special hypothesis done for
V will characterize the particular physical case considered.
We will consider the following two different cases, only:
(i) V = V0 = arbitrary constant; (ii) V = V (ξ), where
ξ ≡ x−u0s is the combined variable (u0 being in principle
an arbitrary real constant). Provided that our attention
is confined to consider the above two assumptions, the
main goal of our study is to investigate on the existence
of solitary solutions of the cubic NLSE and put them in
correspondence with the ones of the standard KdVE.
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3 Basic equations

In this section, starting from the system of equa-
tions (3, 4), we find an evolution equation for the den-
sity ρ, assuming that the current velocity V (x, s) depends
on x and s in a given way.

By multiplying equation (3) by V , the following equa-
tion can be obtained:

ρ

(
∂

∂s
+ V

∂

∂x

)
V = −V ∂ρ

∂s
− V 2 ∂ρ

∂x
+ ρ

∂V

∂s
· (6)

Note that:

∂

∂x

(
1
ρ1/2

∂2ρ1/2

∂x2

)
=

1
ρ

(
1
2
∂3ρ

∂x3
− 4

∂ρ1/2

∂x

∂2ρ1/2

∂x2

)
· (7)

Furthermore, multiplying equation (6) by ρ and combining
the result with (4) and (7) one obtains:

ρ

(
∂

∂s
+ V

∂

∂x

)
V = −∂U

∂x
ρ+

α2

4
∂3ρ

∂x3
−2α2∂ρ

1/2

∂x

∂2ρ1/2

∂x2
,

(8)

which combined again with equation (6) gives:

− V ∂ρ
∂s
− V 2 ∂ρ

∂x
+ ρ

∂V

∂s
=

− ∂U

∂x
ρ+

α2

4
∂3ρ

∂x3
− 2α2 ∂ρ

1/2

∂x

∂2ρ1/2

∂x2
· (9)

On the other hand, by integrating equation (4) with re-
spect to x and multiplying the resulting equation by
ρ1/2

(
∂ρ1/2/∂x

)
, we have:

− 2α2 ∂ρ
1/2

∂x

∂2ρ1/2

∂x2
= −2

∂ρ

∂x

∫ (
∂V

∂s

)
dx

− V 2 ∂ρ

∂x
− 2U

∂ρ

∂x
+ 2 c0(s)

∂ρ

∂x
, (10)

where c0(s) is an arbitrary function of s. By combining (9)
and (10) the following equation is finally obtained:

−
(
∂V

∂s

)
ρ+ V

∂ρ

∂s
+ 2

[
c0(s)−

∫ (
∂V

∂s

)
dx
]
∂ρ

∂x

−
(
∂U

∂x
ρ+ 2U

∂ρ

∂x

)
+
α2

4
∂3ρ

∂x3
= 0. (11)

In the next section, for the special cases mentioned in Sec-
tion 2, equation (11) will be used to obtain the connection
between NLSE (1) and a wide class of Korteweg-de Vries
equation (KdVE) for the density ρ.

4 Motion with constant current velocity:
Nonlinear stationary states

In this section, under the hypothesis of stationary
Madelung’s fluid, we show that the well known nonlin-
ear envelope soliton solutions of the cubic NLSE can be
easily recovered in the present formalism.

4.1 Equations for the stationary Madelung’s fluid

Let us assume that the current velocity is an arbitrary
constant:

V ≡ V0. (12)

Consequently, continuity equation (3) can be written as

∂ρ

∂s
+ V0

∂ρ

∂x
= 0, (13)

which implies that ρ is a function of the combined variable
ξ ≡ x− V0s, i.e.

ρ = ρ(ξ) = ρ(x− V0s). (14)

It is easy to see directly from equation (4) that the phys-
ical assumption (12) implies c0(s) ≡ c0 = const., and in
particular we have:

−α
2

2
d2ρ1/2

dξ2
+ Uρ1/2 = Eρ1/2, (15)

where

E = c0 −
V 2

0

2
= const. (16)

The form of the equation (15) and the representation (2)
imply that the corresponding eikonal is

Θ(x, s) = V0x− c0s, (17)

where we have used equation (5) together with equa-
tion (12). Consequently:

Ψ(x, s) = ρ1/2(x− V0s) exp [ikx− iωs] , (18)

where k ≡ V0/α and ω ≡ c0/α. It is worth to empha-
size that equation (15) is not the usual linear station-
ary Schrödinger equation. In fact, since U is an arbitrary
functional of ρ, U = U [ρ], equation (15) is in general a
nonlinear equation, but nevertheless it describes a sort of
stationary states in the configurational ξ-space (nonlinear
eigenvalue problem).

Substituting (12, 14), and (16) in (11) we have:

2E
dρ
dξ
−
(

2U
dρ
dξ

+
dU
dξ

ρ

)
+
α2

4
d3ρ

dξ3
= 0. (19)

If one assumes that the functional U has the form:

U = q0ρ
β, (20)

with q0 and β real constants, (19) becomes (stationary
modified KdVE):

2E
dρ
dξ
− (β + 2) q0ρβ

dρ
dξ

+
α2

4
d3ρ

dξ3
= 0. (21)
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4.2 Solitary waves of the cubic NLSE
and their connection with the classical KdVE

For β = 1, equation (21) reduces to:

2E
dρ
dξ
− 3q0ρ

dρ
dξ

+
α2

4
d3ρ

dξ3
= 0, (22)

which has the same form of the KdVE for wave solution
with stationary profile. Then, equation (21) is the “natu-
ral” extension of this KdVE to a potential of form given
by (20).

It is well known that, under suitable conditions, equa-
tion (22) admits both periodic (cnoidal waves) and lo-
calized solutions [20,15]. Provided that ρ is non-negative
function, it is very important to observe that if ρ is a lo-
calized solution of (22), thus ρ1/2 is a localized solution
of (15).

Consequently, we can conclude that, for the physical
case under discussion (i.e., V = V0 = const.), if Ψ is a
solitary solution of the following cubic NLSE

iα
∂Ψ

∂s
= −α

2

2
∂2Ψ

∂x2
+ q0|Ψ |2Ψ, (23)

thus |Ψ |2 is a soliton solution of the following KdVE:

− 2 |E|
|q0|V0

∂ρ

∂s
− 3ρ

∂ρ

∂x
+

α2

4 |q0|
∂3ρ

∂x3
= 0, (24)

with V0 6= 0.
We can find the localized solutions of equation (22)

according to the well known method presented in refer-
ence [15]. To this end we can consider two different bound-
ary conditions.

4.3 Classical soliton with standard boundaries
(bright soliton)

In case ρ satisfies the following boundary conditions in the
ξ-space:

lim
ξ→±∞

ρ(ξ) = 0, (25)

and provided that q0 < 0, and E < 0, equation (22) has
the following classical soliton solution:

ρ(x− V0s) = ρm sech2

(
x− V0s

∆

)
, (26)

where ρm = 2 |E| / |q0|, and ∆ = |α|/
√

2 |E|.
Correspondingly, by virtue of (18), the envelope soliton

of the cubic NLSE (23) is given by:

Ψ(x, s) =
(

2 |E|
|q0|

)1/2

sech

[√
2 |E|
|α| (x− V0s)

]

× exp
[

i
α

[
V0x−

(
E + V 2

0 /2
)
s
]]
, (27)

where we have used equation (16). Solutions (26) and (27)
describe standard KdVE soliton and NLSE envelope soli-
ton, respectively. Note that

ρ1/2(x− V0s) =
(

2 |E|
|q0|

)1/2

sech

[√
2 |E|
|α| (x− V0s)

]
(28)

is a solution of the nonlinear-stationary-state equa-
tion (15), when U [ρ]) = q0ρ. Note also that ∆ and ρm
satisfy the following property:

∆2ρm =
α2

|q0|
= const., (29)

and ρm is independent of the soliton velocity V0.
For V0 = 0, (27) becomes a nonlinear localized sta-

tionary state of the cubic NLSE (23) with q0 < 0 and
E < 0.

4.4 Dark solitons

We now consider the cases for which limξ→±∞ ρ(ξ) ≡
ρ0 > 0. Thus, we can cast ρ as:

ρ(ξ) ≡ ρ0 + ρ1(ξ). (30)

Consequently, the following equation for ρ1 can be written:

2E′
dρ1

dξ
− 3q0ρ1

dρ1

dξ
+
α2

4
d3ρ1

dξ3
= 0, (31)

where E′ ≡ E − 3q0ρ0/2. Then, we assume the following
boundary condition for ρ1:

lim
ξ→±∞

ρ1(ξ) = 0,

which implies, by virtue of (15), that

E = q0ρ0 (32)

and, consequently

E′ = −1
2
q0ρ0. (33)

If we look for solutions corresponding to ρ1 > 0 (bright
solitons), it is easily seen that no soliton solutions can be
found. However, soliton solutions exist when

q0 > 0 and E′ < 0, (34)

which corresponds to ρ1 < 0 (dark soliton). In this case, in
fact, equations (32, 33) and (34) are fully consistent. Con-
sequently, provided that |ρ1| ≤ ρ0 to keep ρ non-negative,
we can conclude that dark solitons are possible. Thus, solv-
ing equation (31) for ρ1 and using equation (30) we easily
find the following soliton solution for ρ:

ρ(x− V0s) = ρ0 tanh2

[√
q0ρ0

|α| (x− V0s)
]
· (35)
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Correspondingly, according to equation (18), we obtain
the following envelope soliton of the cubic NLSE:

Ψ(x, s) =
√
ρ0

∣∣∣∣tanh
[√

q0ρ0

|α| (x− V0s)
]∣∣∣∣

× exp
{

i
α

(
V0x−

(
q0ρ0 +

V 2
0

2

)
s

)}
, (36)

where now c0 = q0ρ0 + V 2
0 /2. Note that here ∆

′ ≡
|α|/√q0ρ0 and ρ

′

m ≡ −ρ0 are soliton’s width and soli-
ton’s minimum amplitude, respectively; they satisfy the
following property, fully similar to (29):(

∆
′
)2 ∣∣∣ρ′m∣∣∣ =

α2

|q0|
= const. (37)

Note that, for V0 = 0, (36) reduces to a nonlinear localized
stationary state of the cubic NLSE (23) with q0 > 0 and
E = q0ρ0 > 0.

Notice also that the modulus in (36), which was miss-
ing in equation (1) of the second paper of reference [23],
is essential to provide a soliton solution of the NLSE.

We would like to stress that all the solitary waves
found, in this section, for the cubic NLSE have an
amplitude-independent velocity.

5 Motion with stationary-profile current
velocity

In this section we assume that both the quantity ρ and
V involved in the Madelung’s fluid equations (3, 4) are
function of the combined variable ξ ≡ x− u0s, u0 being a
real constant, i.e.

ρ(x, s) = ρ(ξ), and V (x, s) = V0 + V1(ξ), (38)

where V0, as in the previous section, is an arbitrary con-
stant current velocity associated with the Madelung’s fluid
background motion and V1(ξ) is an arbitrarily large cur-
rent velocity perturbation.

5.1 Basic equations

According to the hypothesis (38), equation (3) becomes

d
dξ

(ρV ) = u0
dρ
dξ
· (39)

Equation (39) can be easily integrated, giving:

V0 + V1 = u0 +
A0

ρ
, (40)

where A0 is an arbitrary constant. Additionally, it is also
easy to see that the arbitrary function of s c0(s) appear-
ing in equation (10) (it comes from the integration equa-
tion (4) with respect to x) becomes constant in the present
case. This constant accounts for the energy conservation.

Consequently, equation (11) becomes now:

(
2c0 + u2

0

) dρ
dξ
−
(

2U
dρ
dξ

+
dU
dξ

ρ

)
+
α2

4
d3ρ

dξ3
= 0, (41)

which is very similar to equation (19). Analogously, as-
suming that the functional U has the form (20), (41) be-
comes(

2c0 + u2
0

) dρ
dξ
− (β + 2) q0ρβ

dρ
dξ

+
α2

4
d3ρ

dξ3
= 0, (42)

which is very similar to the generalized KdVE (21).

5.2 Grey solitary solutions

We observe that, for the physical case under discussion,
the boundary conditions (25) cannot be applied due to
equation (40). In fact, as ξ → ±∞, V (ξ) would diverge.
Consequently, we have to impose the following boundary
conditions for ρ:

lim
ξ→±∞

ρ(ξ) = ρ0, (43)

where ρ0 is a positive constant. It follows that V satisfies
the following boundary conditions:

lim
ξ→±∞

V1(ξ) = 0. (44)

Consequently, the continuity equation (40) gives us:

A0 = −ρ0 (u0 − V0) . (45)

The case of standard KdVE is obtained from equation (42)
for β = 1 , namely:

(
2c0 + u2

0

) dρ
dξ
− 3q0ρ

dρ
dξ

+
α2

4
d3ρ

dξ3
= 0. (46)

By putting:

ρ(ξ) = ρ0 + ρ1(ξ), (47)

from (46) we obtain:

2E′′
dρ1

dξ
− 3q0ρ1

dρ1

dξ
+
α2

4
d3ρ1

dξ3
= 0, (48)

where 2E′′ =
(
2c0 + u2

0 − 3q0ρ0

)
. Note that, boundary

conditions (43) and (44) implies that c0 = q0ρ0 and, con-
sequently:

2E′′ = (u0 − V0)2 − q0ρ0.

Of course, ρ1 satisfies boundary conditions:

lim
ξ→±∞

ρ1(ξ) = 0. (49)

As in the previous section, we can consider the two differ-
ent cases of ρ1 > 0 and ρ1 < 0, respectively.
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If ρ1 > 0 (bright solitons, equation (48) would have
soliton solution for

q0 < 0 and E′′ < 0. (50)

However, according to E′′ definition, we have:

2E′′ = (u0 − V0)2 + |q0|ρ0 > 0, (51)

which contradicts the second of (50). Consequently, no
bright solitons are possible.

If, however, ρ1 < 0, corresponding to grey solitons,
equation (48) admits solutions for

q0 > 0 and E′′ < 0, (52)

provided that the condition |ρ1| ≤ ρ0 is satisfied. In par-
ticular, the second of (52) implies that:

(u0 − V0)2 ≤ q0ρ0, (53)

namely

V0 −
√
q0ρ0 ≤ u0 ≤ V0 +

√
q0ρ0. (54)

In analogy with Section 5.2, equation (48) would have the
following solution:

ρ1(ξ)=−q0ρ0 − (u0 − V0)2

q0
sech2


√
q0ρ0 − (u0 − V0)2

|α| ξ


(55)

and the solution of (15), when U [ρ] = q0ρ, is:

ρ(ξ) = ρ0

[
1−A2 sech2

(√
q0ρ0A2

|α| ξ

)]
, (56)

where

A2 =
q0ρ0 − (u0 − V0)2

q0ρ0
≥ 0. (57)

Note that: A2 ≤ 1, which implies −1 ≤ A ≤ 1. Let
us observe that, from (55), condition |ρ1| ≤ ρ0 together
with (53) imply that (u0 − V0)2 ≥ 0 , which proves the
consistency of the above conditions.

By combining equations (40, 56) the solution for V1(ξ)
is obtained as:

V1(ξ) = −
(u0 − V0)A2 sech2

(√
q0ρ0A2

|α| ξ

)
1−A2 sech2

(√
q0ρ0A2

|α| ξ

) · (58)

However, in order to construct the solution for Ψ by using
equation (2), we now use equation (5), i.e.

V0 + V1(ξ) =
∂Θ0(x, s)

∂x
+

d
dξ
Θ1, (59)

where we have splitted Θ(x, s) in two parts, i.e.

Θ(x, s) = Θ0(x, s) +Θ1(ξ). (60)

Then, by assuming V0 = ∂Θ0/∂x and V1 = ∂Θ1/∂ξ, we
can easily integrate for Θ0 and Θ1, respectively, obtaining

Θ0(x, s) = V0x−
(
q0ρ0 +

V 2
0

2

)
s (61)

and:

Θ1(ξ) = Θ10 −
(u0 − V0) |α|A√
q0ρ0A2 (1−A2)

× tan−1

[
A√

1−A2
tanh

(√
q0ρ0A2

|α| ξ

)]
, (62)

where Θ10 is an arbitrary constant.
Consequently, the solution of the cubic NLSE, i.e. Ψ ,

is:

Ψ (x, s) =
√
ρ (ξ) exp

[
i
α
Θ (ξ)

]
, (63)

where ρ (ξ) and Θ(ξ) are given by (56, 61) and (62), re-
spectively. Note that, for u0− V0 6= 0, this solution repre-
sents a grey envelope soliton (i.e. the minimum amplitude
does not reach zero), whilst, for u0 − V0 = 0, it repre-
sents a dark soliton (the minimum amplitude is zero). In
fact, as it can be seen by (57), u0−V0 = 0 corresponds to
A2 = 1 (and vice versa) and, from (45), that A0 = 0. Con-
sequently, as it can be also seen from (40), V is identical
to V0 and V1 vanishes. Hence, this dark soliton solution is
nothing else but the dark soliton found in Section 4. Thus,
the present section has extended the dark soliton concept
to the grey solitons by means of the inhomogeneity of the
current velocity V (ξ).

We can conclude that in the case of stationary-profile
solutions, both grey and dark solitons exist with non-
arbitrary velocity. In fact, u0 must satisfy the condition
(54). Figures 1, 2 and 3 show the grey envelope soliton in
terms of |Ψ | =

√
ρ(ξ), V1(ξ) and Θ1(ξ), respectively.

Note that, according to the above results, our grey
envelope soliton is given for arbitrary values of the pa-
rameter α. Furthermore, by using (57) and (62), we have

Θ1(ξ)
α

=
Θ10

α
− sign (u0 − V0) sign (α)

×tan−1


√
q0ρ0 − (u0 − V0)2

|u0 − V0|

×tanh

ξ
√
q0ρ0 − (u0 − V0)2

|α|

 · (64)

Consequently, from (56, 61) and (64) one can easily see
how the envelope solution (63) depends on a sign change
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Fig. 1. N ≡ |Ψ |/√ρ0 =
p
ρ/ρ0 versus X ≡ ξ/|α| where ξ =

x− u0s, for ρ0q0 = 0.5, u0 = 1, and V0 = 0.7 .
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Fig. 2. V versus X ≡ ξ/|α|, where ξ = x−u0s, for ρ0q0 = 0.5,
u0 = 1, and V0 = 0.7 .
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Fig. 3. R ≡ Θ1/α versus X ≡ ξ/|α|, where ξ = x − u0s, for
positive α, ρ0q0 = 0.5, u0 = 1, V0 = 0.7 , and Θ10 = 0.

of α and u0 − V0, respectively. In particular, note that a
sign change of α does not change |Ψ |. Finally, note that,
since the following identity

tan−1

[
A√

1−A2
tanh

(√
q0ρ0A2

|α| ξ

)]
=

sin−1


A tanh

(√
q0ρ0A2

|α| ξ

)
√

1−A2 sech2

(√
q0ρ0A2

|α| ξ

)
 (65)

holds, the envelope soliton found above recovers, for non-
zero u0 and V0 and such that u0 − V0 6= 0, the one found
in reference [23], in which only the special case of α < 0
(namely, ω”

0 < 0 in Ref. [23]) has been considered. In par-
ticular, our solutions, as results of the above new method
in solving NLSE starting from the associated KdVE, give
new insights and an alternative key of reading of the en-
velope dark/grey solitons of the cubic NLSE in terms of a
fluid language (see, f.i., the soliton solution for the current
velocity), which is usual for soliton solutions of the KdVE.

Finally, we notice that the present soliton solution
within the framework of the Madelung fluid, which in
the unperturbed state moves with the constant velocity
V0, can be equally well obtained by a Galilean transfor-
mation from the corresponding soliton solution based on
a Madelung fluid that in the unperturbed state has no
background flow.

6 Conclusions and remarks

In this paper, we have presented an investigation for the
existence of solitary waves of NLSE that has been carried
out within the framework of the Madelung’s fluid picture.
We have considered the case of constant current velocity
(V = V0) as well as the one of arbitrarily large amplitude
perturbation of the current velocity with stationary-profile
(V = V0 + V1(ξ)). In both cases we have shown that the
pair of motion and continuity equations (which are fully
equivalent to NLSE) can be transformed into a suitable
KdVE for waves with stationary profiles. If localized so-
lutions are requested, the first case (V = V0) recovers the
well known envelope solitons of the NLSE whose main fea-
ture is that the amplitude is independent of the velocity
V0. This family contains standard NLSE envelope solitons
which are bright or dark whose phase is linear in x and s.
The squared modulus of these envelope solitons is a solu-
tion of a suitable KdVE. The second case (V = V0+V1(ξ))
recovers localized waves that relate the amplitude with the
velocity u0 and have a nonlinear phase. Also in this case,
we have shown that the squared modulus of these enve-
lope solitons are solutions of a suitable KdVE. However,
we have found that, in this family of solutions, the enve-
lope solitons are grey and they exist for a limited range
of u0 (see Eq. (54)). Moreover, we have shown that the
existence of this grey solitons family is strictly connected
with the soliton-like inhomogeneity of the current veloc-
ity (V (ξ)). This result is a peculiarity of the Madelung’s
fluid description and, therefore, is not fully evident in the
envelope soliton solution of the cubic NLSE as given in
reference [23]. We have also shown that the limiting case
of dark solitons (A2 = 1) recovers the corresponding solu-
tion obtained in Section 4 (V = V0). Thus we have proven
that a correspondence between the cubic NLSE and the
usual KdVE exists, within which a soliton solution of the
latter is the squared modulus of the envelope soliton of
the former.

We would like to point out that the method used in this
paper to provide localized solutions for the NLSE within
the context of the Madelung’s fluid picture and to get a
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KdVE equation seems to be powerful and promising. Fur-
thermore, it provides for an alternative physical interpre-
tation, based on a fluid picture, of the nonlinear problems
related to NLSE in a number of different physical situ-
ations, such as nonlinear propagation of e.m. wavepack-
ets in optical fibers [7] and plasmas (f.i., Langmuir soli-
tons) [15,6]. In the longitudinal charged-particle beam dy-
namics of the circular accelerating machines it may be
important to investigate on possible connections between
standard solitons, predicted by the standard fluid and ki-
netic theories [17,24], and envelope solitons, predicted by
the Thermal Wave Model [12,13]. In mesoscopic physics
it may give new insights in the formation mechanisms of
nonlinear localized structures predicted by the theory of
Ginzburg and Landau [8,9] and by the Gross-Pitaevskij
equation [10].

A natural extension of the present work would be the
study of the case corresponding to the current velocity
as an arbitrary function of the time-like variable, s. This
physical assumption would allow us to describe in the
Madelung’s fluid picture the coherent motion of nonlin-
ear structures. It is clear from equation (11) that a sort of
generalized KdVE can be written for the squared modulus
of the NLSE wave function. In perspectives, an investiga-
tion on the existence of solitary waves for such a kind of
equation will be carried out in a future work.

One also can think to get multi-soliton solutions in
the standard theory of KdVE (e.g. by the inverse scat-
tering method or by the Hirota’s method [25]). Thus,
nonstationary-profile solutions must be looked for. How-
ever, in our method we are dealing with stationary-profile
solutions only. Multi-soliton solutions are, hence, out of
the scope of the present paper. Nevertheless, by allowance
of a more general dependence between ρ and V (which
have to satisfy the system of coupled Eqs. (3) and (11))
and by specifying the explicit form of the functional
U [ρ], one could imagine to find multi-solitons also for the
Madelung’s fluid.
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(project “Nonlinear Phenomena, Instability and Macroscopic
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